SIRT3 deacetylates and activates OPA1 to regulate mitochondrial dynamics during stress.

نویسندگان

  • Sadhana A Samant
  • Hannah J Zhang
  • Zhigang Hong
  • Vinodkumar B Pillai
  • Nagalingam R Sundaresan
  • Donald Wolfgeher
  • Stephen L Archer
  • David C Chan
  • Mahesh P Gupta
چکیده

Mitochondrial morphology is regulated by the balance between two counteracting mitochondrial processes of fusion and fission. There is significant evidence suggesting a stringent association between morphology and bioenergetics of mitochondria. Morphological alterations in mitochondria are linked to several pathological disorders, including cardiovascular diseases. The consequences of stress-induced acetylation of mitochondrial proteins on the organelle morphology remain largely unexplored. Here we report that OPA1, a mitochondrial fusion protein, was hyperacetylated in hearts under pathological stress and this posttranslational modification reduced the GTPase activity of the protein. The mitochondrial deacetylase SIRT3 was capable of deacetylating OPA1 and elevating its GTPase activity. Mass spectrometry and mutagenesis analyses indicated that in SIRT3-deficient cells OPA1 was acetylated at lysine 926 and 931 residues. Overexpression of a deacetylation-mimetic version of OPA1 recovered the mitochondrial functions of OPA1-null cells, thus demonstrating the functional significance of K926/931 acetylation in regulating OPA1 activity. Moreover, SIRT3-dependent activation of OPA1 contributed to the preservation of mitochondrial networking and protection of cardiomyocytes from doxorubicin-mediated cell death. In summary, these data indicated that SIRT3 promotes mitochondrial function not only by regulating activity of metabolic enzymes, as previously reported, but also by regulating mitochondrial dynamics by targeting OPA1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tumour suppressor SIRT3 deacetylates and activates manganese superoxide dismutase to scavenge ROS

Mitochondria manganese superoxide dismutase (SOD2) is an important antioxidant enzyme, deficiency of which is associated with various human diseases. The known primary regulation of SOD2 is through transcriptional activation. Here, we report that SOD2 is acetylated at Lys 68 and that this acetylation decreases SOD2 activity. Mitochondrial deacetylase SIRT3 binds to, deacetylates and activates S...

متن کامل

Sirt3 Mediates Reduction of Oxidative Damage and Prevention of Age-Related Hearing Loss under Caloric Restriction

Caloric restriction (CR) extends the life span and health span of a variety of species and slows the progression of age-related hearing loss (AHL), a common age-related disorder associated with oxidative stress. Here, we report that CR reduces oxidative DNA damage in multiple tissues and prevents AHL in wild-type mice but fails to modify these phenotypes in mice lacking the mitochondrial deacet...

متن کامل

SIRT3 Deacetylates Isocitrate Dehydrogenase 2 (IDH2) and Regulates Mitochondrial Redox Status

From Department of Biomolecular Chemistry and the Wisconsin Institute Discovery, University of Wisconsin-­‐Madison, Madison, Wisconsin 53715 Running head: Sirt3 Deacetylates IDH2 and regulates redox status Address correspondence to: John M. Denu Ph.D., 2140 Wisconsin Institute of Discovery, 330 N Orchard Street, Madison, WI 53715. Fax: 608-­‐316-­‐4602; E-­‐mail: [email protected] Background: NA...

متن کامل

SIRT3 and SIRT5 Regulate the Enzyme Activity and Cardiolipin Binding of Very Long-Chain Acyl-CoA Dehydrogenase

SIRT3 and SIRT5 have been shown to regulate mitochondrial fatty acid oxidation but the molecular mechanisms behind the regulation are lacking. Here, we demonstrate that SIRT3 and SIRT5 both target human very long-chain acyl-CoA dehydrogenase (VLCAD), a key fatty acid oxidation enzyme. SIRT3 deacetylates and SIRT5 desuccinylates K299 which serves to stabilize the essential FAD cofactor in the ac...

متن کامل

Succinate Dehydrogenase Is a Direct Target of Sirtuin 3 Deacetylase Activity

BACKGROUND Sirtuins (SIRT1-7) are a family of NAD-dependent deacetylases and/or ADP-ribosyltransferases that are involved in metabolism, stress responses and longevity. SIRT3 is localized to mitochondria, where it deacetylates and activates a number of enzymes involved in fuel oxidation and energy production. METHODOLOGY/PRINCIPAL FINDINGS In this study, we performed a proteomic screen to ide...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 34 5  شماره 

صفحات  -

تاریخ انتشار 2014